a) ABC' + B C' D' + B C + C' D = B + C' D
Sol:
LHS = (ABC’+BC)+
(BC’D’+C’D)
=B(C+C’A) +C’ (D+D’B)
=B(C+A) +C’ (D+B)
=AB+BC+C’D+C’B
=AB+C’D+B (C+C’) //C+C’=1
=AB+C’D+B
=B (1+A) +C’D //1+A=1
=B+C’D
=RHS
b) WY + W' Y Z' + WXZ + W'
X Y' = WY + W' X Z' + X' Y Z' + X Y' Z
Sol:
RHS=wy + w’xz’ + x’yz’ +
xy’z
=WY(1+XZ)+
w’xz’(Y+Y’)+ x’yz’ (W+W’)+ xy’z(W+W’)
//Y+Y’=W+W’=1+XZ=1
= wy + wxyz + w’xyz’ + w’xy’z’ +wx’yz’
+ w’x’yz’ + wxy’z + w’xy’z
=wy + w’xyz’ + w’x’yz’ +
wxyz +wxy’z + w’xy’z + w’xy’z’ + wx’yz’
=wy + wx’yz’ + w’yz’(x +
x’) + wxz(y + y’)+w’xy’(z + z’)
=wy(1 + x’z’) + w’yz’ +
wxz + w’xy’
= WY + W' Y Z' + WXZ + W'
X Y'
=LHS
c) A D' + A'
B + C'D + B'C = (A' + B' + C' + D')(A + B + C + D') = AC’+A’B +B‘C + D’
Sol:
RHS=(A' + B' + C' + D')(A +
B + C + D')
=A’A+A’B+A’C+A’D’+B’A+B’B+B’C+B’D’+C’A+C’B+C’C+C’D’+D’A+D’B+D’C+D’D’
=A’B+A’C+A’D’+B’A+B’C+B’D’+C’A+C’B+C’D’+D’A+D’B+D’C+D’ //AA’=0; D’D’=D’
= AC’+A’B +B‘C + D’+ A’C
(B+B’) + B’A (C+C’) + C’B (A+A’) //A+A’=1
= AC’ (1 + B’ + B) + A’B (1 + C’ + C) +B’C(1 + A + A’) + D’ //1+A=1
= AC’+A’B +B‘C + D’
=LHS
No comments:
Post a Comment